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Correlation and X-ray Scattering. I. Density Matrix  Formulation 
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Equations suitable for obtaining values of the coherent and total intensities of X-ray radiation scattered 
by N-electron atomic systems are developed from the 1- and 2-particle density matrices. Although elec- 
tron scattering within the first Born approximation can be treated in the same fashion, a separate con- 
sideration of this problem is not required since the scattered electron and X-ray intensities are related 
by equations well established in the literature. 

The general formalism presented here is such that it easily allows the computation of X-ray scattering 
factors and intensities to extend beyond the Hartree--Fock approximation, thereby incorporating elec- 
tron correlation effects. Evaluation of the relevant equations requires the natural orbitals or the natural 
spin orbitals and the natural geminals or the natural spin geminals. These can always be obtained from 
the 1- and 2-particle density matrix analyses of the N-electron wavefunction 7~g characterizing the atomic 
state. In the event that ~e is approximated by a single Slater determinant, the equation for the total 
scattered X-ray intensity reduces to the familiar Waller-Hartree result. 

1. Introduction 

The purpose of this paper is to formulate the problem 
of X-ray scattering from atomic systems in terms of the 
1- and 2-particle density matrices. Electron scattering 
within the first Born approximation is amenable to a 
similar development. However, results obtained for the 
X-ray case can be applied directly to this problem via 
relationships given by Morse (1932). § 2 is devoted 
mainly to the development of the density matrix 
formalism for X-ray scattering, whereas § 3 illustrates 
that the usual Waller-Hartree (1929) theory is a special 
case of this formalism. 

2. Theory 

A. General remarks 
In order to introduce the density matrix formulation, 

we will briefly review a few necessary equations. If the 
N-electron atomic system is initially in a state described 
by the wavefunction ~Ug, the expression for the total 
intensity of X-ray radiation observed at an angle o9 
with_ respect to the scattering plane is given (Waller & 
Hartree, 1929) by 

1,(co)=~a.(~le.l~'.) (~.leT, I ~ )  • (1) 
/ , /  

The summation in (1) extends over all electronic states 
(represented by ~un) for which the energy differences 
E n - E g  are less than the energy of the incident radia- 
tion. The scattering operator Pn has the definition 

Pn=~/iel ~ exp { i [ ~ c S - k s ( E n - E g ) / h v i n e ]  " rj) (2) 
l 

where the summation is over all electrons in the system. 
In a non-relativistic treatment the parameters an are 

the Breit-Dirac recoil factors.* The scattering vector 
S, ISI = 2  sin (o9/2), represents the difference between 
unit vectors in the directions of the incident and scat- 
tered X-rays whereas the vector ks in the scattered 
direction has a magnitude determined from the con- 
servation of energy principle. The propagation con- 
stant x has a magnitude of 2rc/2. The classical expression 
Iel for the total intensity of radiation scattered by a 
free electron initially at rest is given by Thomson (1906). 

With the assumption that no energy transfer occurs 
between the incident radiation and the scattering sys- 
tem, the summation in (1) reduces to 

Ie(oo)= ( ~glel Tg) (~gle*l ~g) 
= I( ~'glPI ~Ua)I z (3) 

for the coherent intensity Ic. Note that the operator P 
has the definition given by (2) but with En = Eg. With 
the assumptions that the incident X-ray frequency Vine 
is greater than the atomic K-shell absorption frequency 
and that Vn ~ Vine, Waller & Hartree (1929) invoked the 
closure relation in (1) to obtain the zero-order expres- 
sion (zero-order in incident X-ray energy) 

lt(co)/Iel = ( qJglPP*l ~g) 
= (~lle121~,~> (4) 

for the total scattered intensity h. The scattering oper- 
ator P has the same definition as employed in (3). 
Unless the incident photon energy hvine is greater than 
the excited state energies En for all n, use of the closure 
relation is not strictly valid. For some incident energies 
or for heavy atoms this is clearly the case, as pointed 

* These factors (Breit, 1924) are defined in terms of the 
incident and scattered X-ray frequencies as a n  = ( V n / V l n e )  3 with 
h(vine- Vn) = E,-- Eg where vine is the frequency of the incident 
X-ray radiation. In terms of the incident X-ray energies these 
factors represent third order corrections to h(co). 
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out by Bonham (1965). Thus Bonham (1965) has 
obtained correction terms to h(co)/Iel (for X-ray scat- 
tering and for electron scattering within the first Born 
approximation) through third order in the incident 
X-ray energy and to first order in the nuclear charge 
Z. The errors in h(co)/lel for X-rays are smallest at 
small scattering angles since the correction term Ah(co) 
for a given atomic system and given incident energy 
can be reduced (Bonham, 1965) to a power series in- 
volving sin (oJ/2). 

As the total scattered intensity is composed of cohe- 
rent and incoherent components, the zero-order con- 
tribution to the incoherent part can be determined 
from their difference 

h@) =h(co)-I,(co) 
= < ~ g l l P I Z l ~ g > - l < ~ g l P l ~ g > l  ~ , (5)  

In terms of the scattering variable It, It = rcS, the usual no- 
tation employed for the quantities introduced above is 

h(tt)/I~ = F2(it) + S(it) (6a) 
Ic(it)/Iet= F2(it) (6b) 
II(It)/Iel = S(it) (6e) 

where S(it) and F(it) are known as the incoherent scat- 
tering factor and the atomic form factor (coherent 
scattering factor) respectively. For spherically sym- 
metric electron distributions, F and S depend only on 
the magnitude of It, lIt] =4zt sin (09/2)/2. 

The problem of electron scattering from free atoms 
has been treated in detail by Morse (1932). Within the 
first Born approximation and to the level of approx- 
imation outlined above for X-ray scattering, Morse 
gives the zero-order expression 

4 
I~(it)/Iel= -~  [N 2 -  2UF(it) + oe(it)] (6d) 

for the total electron intensity scattered at an angle co 
with respect to the scattering plane. In our notation N 
is the number of electrons, F(10 is the coherent X-ray 
scattering factor while g(it)=h(lt) represents the total 
intensity of scattered X-ray radiation. The expression 
/el is given by Rutherford's (1911) law. Since the ex- 
pression for the coherently scattered electron intensity 
can also be written in terms of its X-ray counterpart 
(Morse, 1932), 

4 [ U -  F(It)]= (6e) i~(it) =fz(it) = - ~  

(6d) can be rewritten as 

4 {(N_F(It))z+S(It)} (6f) I~(it)/Iex= --~ 

where S(it) is just the incoherent X-ray scattering 
factor. The total, coherent and incoherent electron 
intensities can therefore be obtained from their X-ray 
counterparts except at co =0  (i.e./z = 0) where (6e) and 
(6f) are undefined. For co = 0 the expression 

l~(O)/ Io,= [f.(O)la = [~<r2)] " (6g) 

may be obtained from Ibers' (1958)formula for fe(0). 
As correction terms to It(it)lie1 for X-ray and electron 
scattering can be found elsewhere (Bonham, 1965), the 
density matrix formalism for X-ray scattering will be 
based on (3) and on (4) for the coherent and total 
intensities, respectively. For incident electrons of 
velocity v, (6e) to (6g) should be multiplied by fl-1/2 
where fl= 1 -(v/c) 2. 

B. Density matrix formulation 
For any normalized N-electron wavefunction gig, the 

p-particle density matrix is defined (Ltiwdin, 1955) as 

FC~)(1,2 . . . .  p l l ' , 2 ' , . . . , p ' )  

=(~) I g*~(1,2,... N ) ~ ; ( I ' , 2 ' , . . . , p ' ,  

p + l , . . . , N ) d p + l . . . d N  (7a) 

where ( ~  represents the binomial coefficient. In (7a) 
the integration is over the combined space-spin coor- 
dinates of electrons p + 1,p + 2 , . . . ,  N. The following 
properties of F(:°) arise from its definition: 

F(~) (1 ,2 , . . . ,p l l ' ,2 ' ,  . . . .  p') 

= F*( v)(l', 2 ' , . . .  ,p'[ 1 ,2 , . . .  ,p) (Hermitean) (7b) 

F ( r ) ( 1 , 2 , . . . , p l l ' , 2 ' , . . . , p ' )  

= - / ' ( : ° ) ( 2 ,  1 , . . .  , p [ l ' , 2 ' , . . . , p ' )  

= - F ( v ) ( 1 , 2 , . . .  ,pIT, 1 ' , . . .  ,p') 
(Antisymmetric) (7c) 

I F(v)(1 ,2 , . . . ,p11,2 , . . . ,p)dl  d 2 . . . d p  =(~) 

(Finite trace). (7d) 

If f2 is any many-particle operator which can be written 
in terms of zero, one-, two-, three-, . . .  many-particle 
contributions ~0, O1, f212, ~"~123 . . . ,  

1 ~;~,;+ ~ Y. ~,~k + ... (8) 

its expectation value (~2> takes the form (LiSwdin, 
1955) 

( O > = a 0 +  f ralV( ')( l l l ' )dl+ f Q12F(2)(l'2[l"2')dld2 

+ i g?lEaF(3)(l'2'3]l"2"3')dld2d3+ . . . .  (9) 

According to convention (L6wdin, 1955), the operators 
fal, fal2, lax23 which appear in the integrands of (9) 
work only on the unprimed variables. One then sets 
1' = 1, 2' = 2, 3' = 3 , . . .  and carries out the integrations. 

In order to cast It/Iel in the form indicated by (9), 
we rewrite (4) as 

I,(it)/Iot= i % ( d z ) + 2  ~';[½ ~ '  
l ,k 
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x exp {ilt" (rj-rk)}]gSg(dv) 

I * t = N + 2  ~g(1,2,.. . ,N)[½ 
l ,k 

x exp {ilt" (r j-r~)}]~g(1,2, . . . ,N) 

X d ' q d ' c 2 .  • • d z ' N  (10) 

where i" denotes the unit operator and the prime 
indicates summation over all j¢k .  In terms of the 
2-matrix (10) may be written as 

(, 

h(lt)/Iel=N+ 21 exp{ilt" (rl-r2)} 

x F(i)(1,2]l',2')dld2 (lla) 

where the integration is over both the space and spin 
coordinates of electrons 1 and 2. 

At this point in our development of the density 
matrix formalism we note that exp {ill" ( r l -  r 2 ) }  is a 
spin-free operator and strictly of a multiplicative na- 
ture. We therefore dispense with the primed 'book- 
keeping' notation in (1 la) and in subsequent equations 
which refer to X-ray quantities, but we will continue 
to carry the spin coordinates in these equations. For 
an evalution of (1 la) we use the diagonal representa- 
tion of F (2) in terms of its eigenfunctions, the natural 
spin geminals (NSG), 

v(2~(1,211',2')= ~ 2~& (1,2)g~(1',2'). (llb) 
i=1  

This representation of F (z) leads to the expression 
(, 

h(l'O/Ie'=N+2 2Jl exp { i l l "  (rl-r2)} 
i----1 

&(1,2)g;(1,2)dld2 (12) 

for the total intensity of scattered X-ray radiation. 
The expansion coefficients 2j which appear in (12) are 
the eigenvalues (pair-occupation numbers) of F (2) 
while the summation limit r, the 2-rank (Ando, 1963) 
of gig, is the number of non-zero eigenvalues of F (2). 

It is easily shown that the expression for the coherent 
intensity Ic can be written as 

lc(tt)/lel= l S exp {ip. r}y(lll)dl l2 (13) 

where y(l[1) denotes the 1-particle density matrix. In 
terms of the eigenfunctions of y(1]l), the natural spin 
orbitals (NSO), (13) may be written as 

g (, 

¢(rO/Iol= I r, I exp r}zl(1)Z~(1)dl[2 (14) 
/-----1 

where ?j indicates the eigenvalue (occupation number) 
of the j th  NSO ZJ (r, s). The manner in which the NSO 
and the NSG are obtained from many-electron wave- 
functions has been discussed at length by L6wdin 
(1955), by Barnett & Shull (1967) and by others. 

Although (12) and (14) are completely general, they 
may be evaluated at zero scattering angle without 
explicit knowledge of the {Z~} or the {g~}. Since the 
{gi} are mutually orthonormal, (12) reduces to 

h(O)/Iel= N+ 2 ~ & 
=N+2(~) 
= N  2 

with the same result holding for/c(0)/Iex. This result is 
consistent with the usual observation that at zero scat- 
tering angle the scattered X-ray radiation is coherent 
while the intensity has a magnitude equal to the square 
of the number of electrons. 

C. Application to atomic states 
In order to further develop equations (12) and 

(14), we must consider the structure of y(111') and 
F(2)(1, 211', 2'). Bingel (1960) has demonstrated that if 
7*g is an eigenfunction of ~2 and Sz with eigenvalues S 
and M respectively, then the 1-matrix ~(1[1') may be 
expressed as 

y(111') = y+(rlr') ~(s) c~*(s') + y-(rlr') fl(s) fl*(s') (15) 

provided that ~ug can be represented as a sum of 
products of space and spin functions. In (15) the y~: are 
the spatial components of 7,(111') while c~ and fl indicate 
the usual spin functions. The spin-orbital treatment 
(L6wdin, 1955) allows ?(111') to be expanded in terms 
of its NSO's and (14) is a consequence of this expansion. 
Since exp{ill" r} is a spin-independent operator we 
may also write the coherent intensity expression in 
terms of the eigenfunctions (the natural orbitals, NO's) 
of the charge density matrix, 

~(r) = T+(rlr) + T-(rlr), 

a s  

Ie(It)/Iel=l~ 9I, I exp {ilt" r}2k(r)2~,(r)dSr[ 2 • (16) 

However, the occupation numbers {9~} of the NO's 
{2~} appearing in (16) are not necessarily the same as 
the {yk} which appear in (14). 

Further development and evaluation of (14) or (16) 
requires explicit knowledge of the occupation numbers 
and of the NSO's or NO's. Although any set of one- 
electron functions would be appropriate, we assume 
for convenience that the NO's or the NSO's are ex- 
panded in a finite sum of normalized Slater-type 
orbitals (STO's) ~0j. In particular, the NO's may be 
expressed as 

2n(r)= ~ q)j(r)bjn (17a) 
j = l  

~0j(r)=NiRj(r ) Y~, (0,fp) (17b) 

(2°~i)ni+U2 rnJ -1 exp {--c~jr} (17c) NjRI(r)= [(2nj)!]u2 

where the Y'f(O, ~o) are the usual normalized spherical 
harmonics. A similar expansion can be used for the 
NSO's Z,,(r,s) by including a spin function j~(s) in the 
definition (17b). Thus the expression for le can in all 
generality be written as 
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-q Pn l~n _ • 

Icot)/Iel=[ ~. ~ ~ Ynbknbln 3 exp (il~" r} 
n = l  1=1 k=l 

x (pk ('f)~07(r)d3rl 2 (18) 

where pn is the number of STO's employed in the ex- 
pansion of the nth NO. Had we used the NSO's rather 
than the NO's, (18) would contain factors (fj(s)lf~(s)) 
arising from the spin integrations. If the NO's are 
expanded in a basis other than a STO set, knowledge 
of the transformation matrix connecting the two basis 
sets allows (18) to be used for the computation of Icot). 

As for the case of the 1-matrix, McWeeny & Kutzel- 
nigg (1968) have demonstrated* that if ~ug is an eigen- 
function of ~2 and 5~z with eigenvalues S and M; then 
/'~2) may be expressed as a linear combination of 
spatial and spirt factors, 

FC2)(1,211', 2') = Pt(aa* + bb* + cc*) + P, dd* 

+ CI(S,M ) [T(ll)(aa * -bb*) 
+ T(2t)(cd * +dc*) + T(31)(dc*-cd*)] 
+ C2(S,M) [T(2)(aa * + bb*- 2cc*)]. 

(19) 
The P 's  are the symmetric (singlet) and antisymmetric 
(triplet) spatial components of F< 2) while the C's are 
certain vector coupling coefficients and the T's are 
various 2-particle spatial functions; all are defined in 
the paper cited above. The a(Sl,S2), b(Sl, S2), C(Sl,S2) 
denote the three triplet spin states while d(s~,sz) re- 
presents the singlet spin state. As pointed out by 
McWeeny & Kutzelnigg (1968), the eigenfunctions of 
FC2) are of pure symmetric or antisymmetric character 
only if the terms in cd* and dc* vanish. These authors 
also remark that this is generally true only for singlet 
states or for states with M =  0. 

We now examine the implications of (19) with re- 
spect to the expression for h. Since exp {ila" (r l -r2)} 
is spin independent and only of a multiplicative nature, 
insertion of (19) into ( l la)  and summation over the 
spin coordinates of electrons 1 and 2 gives 

hot)/Iel=2 { I exp {ilx" (r l -r2)} [3Pt(rl,r2[rlr2) 

+ Ps(rl, r2lrl, r2)]d3rld3r2 / + N .  (20) 

An evaluation of the total intensity expression there- 
fore requires only the natural geminals (NG's). The 
NG's  are either purely symmetric (singlet) or antisym- 
metric (triplet) with respect to interchange of their 
coordinates since they are the respective eigenfunctions 
of the singlet and triplet spatial 2-matrices Ps(rlr21rl, r2) 
and Pt(r~,r2lr~,r2) which occur in the decomposition 
(19). Before casting the total intensity expression in 
terms of the NG's, it is observed that summation over 
spin coordinates in (12) yields an expression wherein 

* For a discussion of the structure and symmetry properties 
of both y and Ft2) the reader may refer to McWeeny (1960) and 
to McWeeny & Kutzelnigg (1968). 

non-vanishing matrix elements of exp { i l l . ( r l - r2 ) )  
only occur between the symmetric or antisymmetric 
spatial components of the NSG's. Matrix elements oc- 
curring for instance between singlet-triplet coupled 
NSG components vanish due to the spin indepen- 
dence of the scattering operator. 

We now consider the formulation of h in terms of 
the NG's. For convenience the NG's  are expanded in 
a sum of 2-electron configurations* 

gj'(rl,r2)= ~ X(/c)(rl,r2)C/cj (k)=kbk2. (21) 
k=l 

The expression for the total scattered X-ray intensity 
can therefore be written as 

/,(.)//cl = g + 2  ~ ~ ~ ~ n C l n f * k n  {f  exp{i." (r 1 
n=l 1=1 k=l 

- r2) )  Xo) (rl,r2) X~*k) (rl,r2)d3radSr2 } (22) 

where m is the number of configurations involved in 
the expansion of the nth natural geminal. In order to 
define matrix elements as either 'diagonal' or 'non- 
diagonal' (22) is recast in the form 

Itot)/Iet=N+2 ~ ~ ~nlC, nl 2 I 
n=l k=l 

× exp ( i~ .  (ra-r2)} ]XCk) (rx,rz)lZd3rld3rz 

+ 4 ~  ~ ~ , ~ C ,  nC*knlexp{i~t.(rl-r2) } 
n=l 1-----1 k ) i  

× XO) (rl,r2) X~*k)(rl,r2) dSrad3r2 . (23) 
Discussion of the form taken by the matrix elements 
appearing in (18) and (23) is reserved for the next two 
sections. 

D. Matrix elements involving natural orbitals 
For present purposes the determination of the co- 

herent scattering factor F involves an evaluation of the 
operator exp {ill" r} over a STO basis. Since the coher- 
ent scattering factor is just the square root of the co- 
herent intensity, the expression for FOt) arising from 
(18) can be expressed as 

r o t ) =  ~ ~?.f, ot) (24a) 
n=l 

* The X(k)(rl,r2) notation signifies a two-electron configura- 
tion constructed from STO's tp~l(r), ~0k2(r). For symmetric 
NG's Xt~) can be represented by a 2 × 2 permanent, or a linear 
combination of 2 x 2 permanents, 

P(~)(rl , r2)= ~ tP/cl(rl)~0k2(r2) + (0/cl(r2)tP/c2(rl) 

while for antisymmetric NG's X<k) can be represented by a 2 × 2 
determinant, or a linear combination of 2 × 2 determinants, 

Dc~)(rl,r2) = ~2 (rP~l(rl)~P~2(r2) - ~k x(r2)tPkz(rl) } • 

If ~g represents a state with z component of spin M = 0, then 
the NSG's are equal to the NG's multiplied by an appropriate 
2-particle spin function. 
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with 

and 

Pn Pn 

fn(~)= ~ ~ bknb]nf~k(g ) (24b) 
j = l  k = l  

f exp {ill" r} ~0k(r) ~0;(r) d3r. (24c) f , k ( . )  = 

To evaluate (24c) the expansion of exp {ila • r} in terms 
of spherical harmonics and spherical Bessel functions 
may be employed 

oo + p  

exp {ill- r}=4zc ~ ~ i~ip(/ur) Yr;(O,~o) Y*pm(o~,fl). (24d) 
p = 0  m = - - p  

Here j~(lzr) are spherical Bessel functions, l~=(/z,~,fl) 
and r=(r,O,~). Substitution of (24d) and (17b) into 
(24c) and integration over 0, q~ yields 

fJk(~) = ~ iv[4~z(2P+ 1)]ll2NIN k Y*pm]--mg(o~,fl) 
P 

× Cv(llm~ ;lkmk) (Jvlt,) (24e) 

where the C~ are the usual Condon-Shortley coef- 
ficients, 

Cv(l,,m, ;lkmk)= (2p-~l) ~/2 

I'_ P~i-m~ (X) P~](X) P~ (X)dX (24f) 
4 

and the remaining term in (24e) has the definition 

(J, ,e> = foR,(r)R~(r)j~o(pr)r2dr. (24g) 

If NSO's rather than NO's were used to evaluate the 
expression for F00, then (24e) would be multiplied by 
S~=(f~(s)lf~(s)). However, for an atomic state that 
is an eigenfunction of ~ ,  S ~ =  1. 

We note the following points of simplification in the 
expansion (24e).* 

(1) For an atomic state which is an eigenfunction of 
Lz, all the STO's used in the expansion of a given NO 
can be characterized by the same mt value so that only 
m~=m~ =rfi appears in (24e). 

(2) For atomic S-states the NO's are further char- 
acterized by the angular momentum quantum num- 
ber l. 

(3) If a definite direction for It may be chosen, the 
selection rule 8(m~,m~) results. 

(4) If the charge distribution is spherically sym- 
metric (Bartell & Gavin, 1964) or if one averages over 
random orientations of la (i.e. an integration over a, fl) 
the expansion (24e) reduces to the zero-order term 
involving jo(lur) = sin (/ur)/pr and 8(mj, m~). 

E. Matrix elements involving natural geminals 
In {} 2C it was mentioned that individual NSG's 

constructed for a singlet state (or a state with M = 0 )  
were either symmetric or antisymmetric under ex- 

• Angular factors for integration involving STO's of s-, p-, 
d- and f-type symmetries are listed in Table 1 of Benesch & 
Malli (1968). 

change of spatial coordinates. In general, NSG's con- 
structed for a state with arbitrary S, M values do not 
exhibit this simple spatial symmetry. However, the 
total intensity expression written in terms of the NSG's 
yields matrix elements which only involve their spa- 
tially symmetric or antisymmetric components. On the 
other hand the NG's are of either singlet or triplet 
symmetry and the total intensity expression was there- 
fore formulated in terms of the NG's. Since the NG's 
are either symmetric or antisymmetric regardless of 
the S, M values of the atomic state, we shall restrict 
our attention to NG's constructed for a singlet state. 
For such a state the symmetric 2-electron configura- 
tions appearing in the NG expansion (21) can be re- 
presented by 

Xtk) (rbr2)=P(k)(rbr2)=tpk(rl)(0k(r2) (k~=k2) (25a) 

1 
- 1/2 [~°kl(rx)~°~E(r2) + ~°e1(rE)tPk2(rl)] (ks -¢ k2). (25b) 

With respect to the operator exp {ig. (rl - r E ) }  for total 
scattering, the expansion (23) incorporates the fol- 
lowing 'diagonal' matrix elements" 

M.E.= (P(g)(rbr2)l exp {i~t • (rl-r2)} [P(e)(rl,r2)) 
= [feel 2 (26a) 

M.E.= (P(e) (rx,r2)l exp {ilL" (rl--r2)}lP(k) (rl,r2)) 
=fg,~fk2g2+ Ifg, g2l 2. (26b) 

The matrix elements (26a, b) follow from the definitions 
(25a, b) respectively. Note that the fete 2 introduced in 
(26) involve only two STO's, 

fk,k2(8) = I exp { i ~ .  r} (Pg2(r) tP/~ l(r) d3r 

and is therefore defined by the expansion (24e). The 
following symmetry properties of the fkl~ 2 should be 
noted: 

# *  
fklk2 =A2kt f~2kx (27a) 
f ;  l k2 =f;  2kl e f k2k~ " (27b) 

The self-adjoint property of exp {ill" (rl--r2)} along 
with the symmetry properties (27a) and (27b) will now 
lead to a new selection rule involving the orbital an- 
gular momentum quantum number lk. 

The subscripts in (25a, b) will be changed in order to 
obtain the 'non-diagonal' matrix elements appearing 
in (23). From (25a) we find 

M.E.= (P(e)(rbr2)l exp {iltt' (rl-rE)}lP(l)(rbr2)) 

=f/1,ft, 
= IfJ~l 2 , ( 2 8 0 )  

whereas from (25b) 

M.E.= (P(k) (rl,r2)[ exp {ilt" (rl-r2)}lPj(rl,r2)} 
I. * * 

= "~ (fk 1Jl f ~  212 + A ,  J2f~ zil 
• (28b) +A2J~I +A2,2ft, l,,) 12 

In (28b) three cases must be considered. 
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Case 1" [lh-l@+llzc2-lhl  odd; and 

Ilg~-bzl + llzcz-b~l odd: 

M.E. = 0  

Case 2: 

Case 3: 

II~-lhl-r-ll~z-lyzl even; and 

1l~-bzl  +ll~z-b~l even" 

M.E. =f~lhfe~z + fe~zf~czh 

]lga-lhl + Ilxz-b21 odd or even; 

II~ - b~l + Ilez-/hi odd or even" 

M.E.=f~dS~zj z or f ~ z f ~ z h  . 

(29a) 

(29b) 

and 

(29c) 

With regard to the 'non-diagonal' matrix elements 
obtained from (25a) and (25b), 

M.E.=  (P(e)(rbr2)] exp {ill" (rl-r2)}lP<j)(rbr2)) 

the same considerations which led to (29a-29c) give 

M.E. = 0, or (30a) 

M.E. = V2fkhfkjz. (30b) 

The selection rules indicated in (29a-29c) have not 
been observed before. They occur because the NG's  
were expanded in configurations involving the non- 
orthogonal (for similar angular symmetries) STO basis. 

Configurations constructed for an antisymmetric 
(triplet) NG must be of the type 

1 
D(e) (rl,r2)= V2 {~°ex(rl)tPez(r2)-tPkl(r2)~°k2(r0} (31) 

and can be shown to yield only the 'diagonal' matrix 
elements 

M.E. =f~l~lAze 2 -  Ifzcdczl 2 

and the 'non-diagonal' elements 

(32a) 

M.E. = 0  (32b) 

M.E. =f~lhf~2j2-f~dzfkzh (32c) 

M.E.=fkxhfk23. 2 or -fglJ2f~2j.1. (32d) 

In order to further evaluate the formulae involving 
IJ iJ l  2 terms which for instance appear in (26a), (28a) 
and (32a), we must consider the possibility of a non- 
spherical configuration. (Open shells involving pn, d n, 
f n  configurations are illustrative examples.) If the con- 
figuration does not exhibit spherical symmetry, then 
from (24e) IJiJl 2 obviously depends on the orientation 
of the scattering vector S, (ll = KS). For a p-type orbital 
oriented in an arbitrary direction, McWeeny (1951) 
demonstrated that the scattering from such an orbital 
is completely defined by two quantities f~ and fx and 
an angle fl between S and the orbital axis. In this 
notation f~ is the scattering factor when S is parallel 

to the orbital axis and f j_ represent the scattering factors 
when S is perpendicular to the orbital axis. 

Freeman (1959) employed group-theoretical methods 
for describing the scattering from open shells involving 
pn and d n configurations. By a transformation of the 
one-electron state functions, the vector S is brought 
parallel to the z axis in the rotated reference frame. In 
this fashion Freeman (1959) obtained results for p-type 
orbitals which are equivalent to those of McWeeny 
(1951). In addition, Freeman derived formulae for 
matrix elements involving d n configurations. However, 
Freeman's method has the disadvantage in that it 
yields orbitals in the rotated reference frame which are 
no longer eigenfunctions of the angular momentum 
operators. 

For non-spherical configurations we can always sim- 
plify the computation of matrix elements by averaging 
over random orientations of S, as pointed out by Pohler 
& Hanson (1965). This procedure involves multiplication 
of (24e) by its complex conjugate and integrating the 
result over the surface of the unit sphere (i.e. integration 
over c~, fl). However, 8(m~,mk) is no longer a valid 
selection rule. 

One final word regarding the form taken by the fit 
is in order. If the STO's have the same orbital angular 
momentum quantum numbers (h=/ j )  but different 
principal quantum numbers ( m ¢  nj) an initial assump- 
tion of spherical symmetry or an averaging procedure for 
non-spherical configurations again leads to the 5(rnj, rn~) 
selection rule. Furthermore, onlyj0(/~r) will be involved 
in the computation of 3~j. Both of these observations 
follow from an integration of (24e) over the surface of 
the unit sphere. 

3. A special case: reduction to the Waller-Hartree 
equation 

By approximating the N-electron wavefunction gig 
with a single Slater determinant constructed from a 
basis set {/#} of orthonormal spin-orbitals, Waller & 
Hartree (1929) have shown that 

N N 

It(It)/Iel=N+ ~ ~ (fnf~,~--Ifjkl 2) (33a) 
j = l  kC] 

N N N 

= N + I  ~J ) j [  z -  ~. If~'jl 2 -  ~. ~ IJ?~l 2 (33b) 
j = l  j = l  j= l  kCj  

where 

fjk fexp {il~" r} * 3 = /Lk(r)/lj(r)d r x ~5(rb,r/k ) . (33c) 

The spin functions are denoted by r/. 
If ~g is approximated by a single Slater determinant, 

then the density matrix and Waller-Hartree formalisms 
must be equivalent. In order to demonstrate their 
equivalence, we must know the form taken by the 
2-matrix. For a single normalized Slater determinant 
constructed from some non-orthogonal spin orbital 
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basis {~0~}, L/Swdin (1955) has shown that the p-parti- 
cle density matrix is completely determined by a know- 
ledge of the 1-matrix, namely 

p !F(~) (1 ,2 , . . . , p l l ' , 2 ' , . . .  ,p') 

O( l ll')a( l i T ) . .  O(lip') 
o( 21130( 2123. 

o(piX')~(pi2') 

• o(2 lp' )  

o(pip') 

(34) 

where the 1-matrix 0 has the representation 
N N 

(pt(r~,r/)~0k(rx,r/)d (l,k) o(lll,)__o(r,,rhlri,q;)__ ~ ~ • , , -1 
k = I  / = I  

(35) 

in the non-orthogonal ~0 basis. The various d(m,n) are 
the non-orthogonality or overlap integrals, 

l ~(r)~o,~(r)d r x 8(r/., tl,~) • d(m, n) = * 3 

Now the basis set {cpj(r,r/)} can always be orthonor- 
malized without changing the nature of the approximate 
wavefunction g/g. The orthonormal spin-orbital basis 
{ ~ }  chosen by L/Swdin (1955) for casting the 1-matrix 
in diagonal form is 

~j= ~ ~ond-'/2(n,j) (36) 
n 

(symmetric orthonormalization procedure) where the 
d-1/Z(l,k) are elements of the unitary matrix d -~/2 
which diagonalizes Q. The 1-matrix now has the diag- 
onal representation 

N 

0(1113= ~2 ~ j ( 1 ) ~ ( l ' ) .  (37) 
j = l  

It must be pointed out that diagonalization of Q does 
not affect expectation values calculated from 0 or 
from any of the F(v) since the density matrices belong 
to a class of operators known as trace operators• A 
well-known property of the trace is that tr(AB) = tr(BA). 
Thus if U is any unitary transformation, UU -1 =U-~U, 
it immediately follows that 

tr(U-W(~)U) = tr(U-1UF(r)) = tifF(i°)UU-1) = tifF(r)). 
(38) 

Although the expression (34) for F(~ °) is a special case, 
(38) is true for a general F(~). 

From (34) the 2-matrix has the form 

2!F (2) (1,211',2')= o(lll')o(ll2') 
0(211')Q(212') (39) 

and by application of (39), (37) and (11 a) it immediately 
follows that the total intensity expression becomes 

It(p)/Icl =N+ ~ ~ I ~ j ( 1 ) ~ ( 1 ) e x p { i l t ' ( r l - r z ) }  
i= l  k = l  

x % (2) ~ ,  (2)dld2- ~ ~j(1)~(2)  
j = l  k = t  

× exp{i~t • (r~ - r2)} qJk (2) qJk (1)dld2 (40) 

after expansion of the determinant. Since the terms 
exactly cancel when j =  k, the expression for/t becomes 

It(~t)/Ict=N+,=l ~ ~ ,  exp {itt • rl}~j(1)~(1)dl 

x I exp{- ilt" r2} ~ (2 )  9Jk (2)d2 

- f exp {-i~t.  r2} ~;(2)%(2)d2 

x I exp {i1:" rl}~j(1) x ~,(1)dl}.  (4D 

It is therefore apparent that (41) can be written as 
N N 

It(lx)/Iel = N + ~ ~ (f,f~k --Ifjk 12) (42) 
j ~ l  k ~ j  

where the fj k are defined as in (33c). However, (42) is 
just the familiar Waller-Hartree result. It is therefore 
evident that the density matrix and Waller-Hartree 
formulations of X-ray scattering are equivalent pro- 
vided that the wavefunction ~g is represented by a 
single Slater determinant. 

4. Summary 

Values of the coherent and total scattered X-ray inten- 
sities can be found from the 1- and 2-particle density 
matrix analysis of an arbitrary state function gig. 
These values can then be used to compute analogous 
electron intensities within the first Born approximation. 
Evaluation of the coherent scattering factor F(I~) was 
shown to involve only the spatial component of the 
1-matrix. Therefore only the NO's are required when 
computing F(la) values, but the NSO's may also be 
used by simply summing over the spin coordinates 
before applying the operator exp {iltt • r}. The analysis 
of the total intensity expression was shown to involve 
only the purely symmetric and purely antisymmetric 
spatial components of the 2-matrix F(2). By assuming 
a convenient expansion for the symmetric and anti- 
symmetric NG's, it was possible to find all the matrix 
elements of exp {lit" (rt-r2)} regardless of the S, M 
values of the atomic state. Although, the matrix ele- 
ments (26-30) and (32) were derived for a particular 
representation of the NG's, they are the only ones re- 
quired in practice provided the transformation matrix 
from an arbitrary basis to the basis of 2 x 2 STO con- 
figurations is known. The same observation holds for 
the matrix elements of exp {ill" r}. In practise, total 
intensity values may also be calculated from an NSG 
analysis of an arbitrary wavefunction by first summing 
over the spin coordinates, the results being equivalent 
to those given above. 
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The density matrix formalism developed here pro- 
vides a general extension of the usual Waller-Hartree 
equations and therefore facilitates a study of the 
importance of effects other than electron exchange; 
that is, we are in a favorable position to assess the 
importance of electron correlation on X-ray scattering. 
This topic is treated in the next paper where we compare 
coherent and total intensity values obtained for the Be 
atom from the NSO and NSG analysis of a configura- 
tion interaction (CI) function, and from a two-con- 
figuration function, with those computed within the 
Waller-Hartree formalism from a HF function. 
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Correlation and X-ray Scattering. II. Atomic Beryllium 
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In order to assess the importance of correlation effects with respect to the Hartree-Fock (HF) results, 
values of the coherent, total and incoherent scattered X-ray intensities were computed for the 1S ground 
state of atomic beryllium. Natural spin orbitals (NSO) and natural spin geminals (NSG) constructed 
from the accurate configuration interaction (CI) wavefunction of A.W. Weiss were used in the evalua- 
tion of these X-ray quantities from previously derived density matrix expressions. Values were also 
computed from the two-configuration wavefunction of Watson, which accounts for the 2s-2p near 
degeneracy effect. As expected, the CI results for the total intensity differ from their HF counterparts but 
the magnitudes of the absolute deviations are not as large as those observed for the coherent intensity 
values. Although the HF results for the coherent intensity are in reasonably good agreement with the CI 
values, conclusions based on the Moller-Plesset theorem must be made with caution. The largest per- 
centage deviations between HF and CI results, however, are observed for the incoherent intensity. All 
calculations reported here were verified by the use of sum rules. 

1. Introduction 

In this paper we examine the effects of electron corre- 
lation on the coherent, incoherent and total intensities 
(the sum of the Compton and Rayleigh contributions) 
of scattered X-ray radiation. Total intensity values 
computed from Hartree-Fock (HF) wavefunctions are 
expected to be somewhat erroneous since an indepen- 
dent particle model (IPM) description of the atom 
assumes that the spatial coordinates of each electron 
are in fact independent of the spatial coordinates of 

the remaining electrons. This neglect of the so-called 
'Coulomb holes' associated with electron pairs can 
lead to errors when evaluating the total intensity ex- 
pression since the scattering operator contains the 
inter-electron distances r~j=ri-r~.  These coulombic 
manifestations of correlation must not be confused 
with exchange effects since exchange terms, which do 
enter the IPM (Waller-Hartree, 1929) expression for 
the total scattered intensity, owe their existence only 
to the antisymmetric behaviour of the HF wavefunc- 
tion. Thus antisymmetry leads to an exchange corre- 


